![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.3 行列式性质与计算
导学提纲
1.行列式有哪些性质?
2.怎么用行列式性质,将行列式化成上(下)三角形?
按n阶行列式定义(定义1.1.4)或展开公式(定理1.2.1)计算n≥5阶行列式是很复杂的.本节介绍行列式的性质,用这些性质可以将行列式化简成上(下)三角形后求值.
将行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739457988-oucKdCdXqLrLXc7ZpfeBJWzgcm76fRFY-0-c555da4e3a12e2ceb1e52a6f523cd8f6)
的行与列对换(即以主对角线为轴翻转;亦即把第i行改成第i列,i=1,2, …, n),得行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739457988-W3GcgYfDlffxq9VYlOUKPG1ecEHOKhui-0-c41318769e710fe89798003448511773)
称后者为|A|的转置行列式,记作|AT|.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1739457988-trngYRUQUV6tKVZ2nrgYiapJQIMXfgX2-0-aabeb0af5b5cc4db0869576d05df2fbc)
读者可以动手算一下,这两个行列式的值都等于-24.其实|A|=|AT|是一个普遍事实.
性质1 n阶行列式|A|=|AT|.
性质1表明行列式的行有什么性质,列也有什么性质.
性质2 用数k乘以行列式|A|=|aij|nn某一行(列)的每一个元素后,所得行列式值等于k|A|.即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739457988-sOlxokNkmbV5WFsn07JJ1aR3aoULEl2w-0-0afcd849045903129559e1b42cb46652)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739457988-I01hThzSOqFyLZUP1OKH8ephzPdQ2vXi-0-225e2498e7558e4fd5f930cbe23e631a)
或者说,如果行列式某一行(列)所有元素有公因子k,可以将k提到行列式前面.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739457988-1ZZDOJZiEggDZvog1HTohjnCRQSG3bRN-0-0cc80307481b02bed815aedea23a8d35)
用3乘以|A|的第2行每一个元素,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739457988-Dgcn0oQLIRnEB2oESHZ1OdZl6q7VLEOV-0-0b8e31a424ac22c9a2cc2f6db793fcd6)
又例如,行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739457988-f5aQLRdT6jkwQf9eCXyy7Od7ZQTZdiJN-0-d12df6ffdb747279320595fe6124ffa7)
的第3列有公因子4,可将4提到行列式前面,从而简化计算.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0002.jpg?sign=1739457988-CQ6zNpyavt3QMNUUwVpCMaQv4rfF1abl-0-e980b39a849cc95d5f8c39dc2713af55)
再例如,欲计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0003.jpg?sign=1739457988-OUJezAJmREWO2tcECWu2lun1Wvt9MBrB-0-ab2ab6d7e4ffb25d84021f6ba9c05038)
为避免分数运算,又要保持|A|值不变,可以将|A|的第1行乘以2,前面乘以;第3行乘以3,前面乘以
,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0006.jpg?sign=1739457988-JYc9bcKgsuljZI9zu1n7gngCEHYgkN4j-0-e969fe6df24a2876e80cbd4a31d84a48)
注意
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0038_0007.jpg?sign=1739457988-CXgi61Zj5DKg31nG79EjS8t04eDuJIy2-0-78376a1f523cc3015647bc5d65ab8abb)
推论1.3.1 如果行列式中有一行(列)元素全为“0”,则行列式值等于零.
性质3 行列式可以按某一行(列)“拆”成两个行列式之和.即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739457988-uMUTUdObLGH7GM9HVKL3l7LoWFK7Q8pp-0-c56bed97023b594fd3792fd2b2cc44cd)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0002.jpg?sign=1739457988-v1fQRFEq3j6ofv2vyDjlU9WRjhW2WgW9-0-a406ed2790caa3c74bd35fc24ad71c2e)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0039_0003.jpg?sign=1739457988-SDeV8ZMhsS79Nu1nlmXFlxtaXKZMcnsE-0-8a77a1f740149eb37eb00c0eb5bade09)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739457988-65TOfbZ3MqTam99sqeW1uo91FEHQDtOX-0-7fad29f7e68c3e2add7a811d1b3874aa)
注意 下面的拆法是错误的.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0002.jpg?sign=1739457988-BEnkQ4yl62Ngd3BjHBpIhoU1p8GBZRmL-0-291afbcfdadabfe799df3b97d9a9fc90)
例1.3.1
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0003.jpg?sign=1739457988-LRk01j7nwQFIWBkncsJj53HE32Mr7jEZ-0-9e9bb6552383e747fa833de342fa9eca)
性质4 对换行列式的两行(列),行列式值反号,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0040_0004.jpg?sign=1739457988-Qhj5XE18Lv6j0mNsl2N8IbmRLBKFPmRA-0-63a816b8c23c4970d165eb02d857dcff)
或
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0001.jpg?sign=1739457988-YBdP6zEIdAyjf1yesrkKIXmPs2SwjbnO-0-69320086d04ea5b23c836a850034cf13)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0002.jpg?sign=1739457988-JHjrRHUpzU0IvLcw0HofHRzXJSaee886-0-db49dc486307453d2f1b7a8b4170e538)
对换|A|的第1行与第3行,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0003.jpg?sign=1739457988-DX0lzvlFAZFqkuzUPJol0na1el5l7FB1-0-27e51e8d7d617e11909bf2e1bbed8c9a)
对换|A|的第2列与第3列,得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0004.jpg?sign=1739457988-O6yEkb6ljqRx6jsE6b3aLKUf9wycW5F3-0-5c375fb445bde16226bad7629f2bec2d)
推论1.3.2 行列式中若有两行(列)元素对应相同,则行列式值等于零.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0041_0005.jpg?sign=1739457988-UPBQZgd3HC1pYlVizz2GzhJ9kxchmbJH-0-6212bff31a73cdcd1f16128e4d6695d5)
证 设|A|=|aij|nn的第i行与第j行相同,对换|A|的第i行与第j行,得-|A|.由|A|=-|A|,推出2|A|=0,所以|A|=0.
推论1.3.3 若行列式中有两行(列)元素对应成比例,则行列式值等于零.
证 不失一般性,以3阶行列式为例.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1739457988-yJmvSzdbBsbUnxCyCf6UM4RrDng09n8h-0-dfd270f4caeacc84283350ff56f4c183)
性质5 将行列式某一行(列)的k倍加到另一行(列)上去,行列式值不变.
证 不失一般性,以3阶行列式|A|=|aij|为例,将|A|的第1行的k倍加到第3行上去(第1行不变,第3行变了),得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0002.jpg?sign=1739457988-RVgeQKZxhO0dfYQGi4qJglaZUh0SD6oY-0-b843cffbbb05bdc274855a0830966faa)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1739457988-G6HpsemkltM0VOT6nLq0EnUfrB6CHAKq-0-9e372eeb8f70cada2f30649c971c3ee3)
例1.3.2 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0043_0001.jpg?sign=1739457988-AbcXnurk0mNNjfm12zg2feP3eMAnMDHY-0-19f665d5b81c0fc7fb08b1d58ebcbb25)
分析 目标是用行列式性质将行列式化成上三角形,然后求值.
解 注1
注1:当c≠0时,表示提出第i行(列)公因子c;
表示对换第i行(列)与第j行(列);
表示把第i行(列)的k倍加到第j行(列)上去;以上记号写在等号上(下)面,表示对行(列)运算.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0043_0002.jpg?sign=1739457988-RqjrPK3HFr5ns0vDzAhQMHx2PPOuqTat-0-95bf8a9481e841ed949b95b29d0cd852)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0001.jpg?sign=1739457988-AZpgoVCVqn3iWVnblch5fpwzaAQuv2wE-0-c83b3b21d8f18dc37a158a2566347b4d)
例1.3.3 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0002.jpg?sign=1739457988-KeQfP6HwjcnXK9Qvoe5b3F83cps7MTYs-0-40006305958fab78da418ef0a7fbc813)
分析 行列式中元素有分数,为便于计算,第2列乘以3,前面除以3;第4列乘以2,前面除以2.
解法1
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0044_0003.jpg?sign=1739457988-qGD29TwssfpPa73qdEGmSzC9F9rGUqyS-0-ff4471a30697ae181bcc29cd4b5e3449)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0001.jpg?sign=1739457988-NfopVTl1GS9rpQpDYNbj9820w3rkSDIi-0-218c2e5b706d95a41ea3561a4c6b93fe)
解法2 继解法1第4步结果:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0002.jpg?sign=1739457988-HO95a72Pb5P2m8xqrVqK6k5ITMqtvhWX-0-3734bdeb2ba905348612d06009212460)
解法3 按第3列展开.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0045_0003.jpg?sign=1739457988-L9YgMrHRwAUKhN0jTDNjNeCk6NpvFRUP-0-13fba945aac788c9a48d3c6449558f94)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0001.jpg?sign=1739457988-u33mroGlWWlZaCRuaVoFufUNs2f4Tah2-0-fe755204fff5b8e5923867e64c1ac21f)
解法4
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0002.jpg?sign=1739457988-8ukNR9Q3egozCX1fOD2r6wzuOAEPKLCA-0-199b0bca4251bb2c2e6b2ac0363b49d7)
例1.3.4 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0046_0003.jpg?sign=1739457988-bkQUKVsUCsiBGFt9BYbZVdYXqQnHJxjO-0-0541e0e548c94f95a78938fd6998843a)
分析 欲直接将行列式化成上(下)三角形,需讨论a≠0, a=0.此方法不可取.另观察原式每一行元素之和相同,因此可将第2、3、4列都加到第1列,提出新的第1列公因子a+3,从而得到一个特殊的第1列.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0001.jpg?sign=1739457988-Dilw8QqmzmVwLAOqMrKikPMgXGD6EVkn-0-ddc03da9f1de814db7ce563f393e7a01)
请读者计算n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0002.jpg?sign=1739457988-2ZTvydmkrZxzsWvFxmPONwIgMpBg1b9j-0-dd70d727b7103e61c280e335d7b434e8)
例1.3.5 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0003.jpg?sign=1739457988-W4vrOS6dOhGYpVOfMiZUQXlop3bOADfH-0-7006c7b27045b0fd37ebbdaf1bce7efb)
分析 原式是5阶行列式,主对角元a1, a2, a3, a4分别与右邻元素反号,所以将原式化成下三角形为宜.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0047_0004.jpg?sign=1739457988-cbzkpjXGjYzgoZYtWJjPOA1akmD29xEP-0-ef1f88161ef9ee16bd14bf016ac680d7)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0001.jpg?sign=1739457988-Uy1ZzfBPeRuRfF8xN9OWKqwxxTitxo0i-0-7209e36bbd10ce530f1ffb44d3c2adc8)
请读者计算n+1阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0002.jpg?sign=1739457988-rD643D4ZMdYfdlBQGpKwwjvNgRyF3937-0-d8cdcfcb108cb2d743589a68968fc1a3)
例1.3.6 证明
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0048_0003.jpg?sign=1739457988-4T62K8wQqiuk4EK8nuGmvOYVyTr69xHL-0-7f3bca258270c3227d6d64452cd56aa0)
证 记等式左边为|A|,将|A|的每一行提出公因子(-1),得
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0001.jpg?sign=1739457988-Zftc6HzEMq9Tw1kFVvfoOmTuohzZvBzC-0-deca87c080c2d0e41e08ba2ba0658b84)
移项,2|A|=0,所以|A|=0.
n阶行列式|A|=|aij|nn中,如果aij=-aji,则称|A|为反对称行列式.请读者证明:奇数阶反对称行列式值等于零.
例1.3.7 计算4阶范德蒙(Vandermonde)行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0002.jpg?sign=1739457988-lDqO9fOXn7ocrSnxdCffjjaF27ChGmAK-0-c54bf9d0e5ccc67a062bdd6ad282b5a1)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0049_0003.jpg?sign=1739457988-8dh9cJqk2pOwB2qqUKc9nPwEhS8QNUda-0-cba334129aea4e9a2353ad8469a116b6)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0001.jpg?sign=1739457988-wC8HB4bCoA100r6TyykMornX7hfi5zte-0-b82e344e8024198f4ebbdac68d9d40d5)
用数学归纳法可以证明n阶范德蒙行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0002.jpg?sign=1739457988-dboGOyoFK0HKuCb8SGsp34YQYnULOrcl-0-2c5edc2b0a2a1a841ee4af8f72c1b061)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0050_0003.jpg?sign=1739457988-SoUOJZbEYBO23eqR4G392VkbVWJPal3H-0-dd08a2c7be32876b69d8f146424f9040)
习题1.3
1.利用行列式性质证明下列等式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0001.jpg?sign=1739457988-l3JLdwEQSZdnMTYTc43asjksy73t5NnV-0-ba5590478919ae26c10ed5c843b41a8a)
2.设3阶行列式|ai j|=a,求下列行列式值.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0002.jpg?sign=1739457988-JhGNyNCZ16ruL4FJsbn6BOb95TnmdbMF-0-ee0eb8539fca57b454b03fdc9e466b46)
3.设5阶行列式|ai j|=12,依下列次序运算:对换第1列与第4列;然后转置;用2乘以所有元素;将第5行的(-3)倍加到第2行上去;再用乘以第3列每一个元素,求最后一个行列式的值.
4.填空:设
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0004.jpg?sign=1739457988-hEUQP7k8oruMlt99BPyJpjFH7CWyirC2-0-f45f4c79cf9c690f16b19cc249af3311)
那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0051_0005.jpg?sign=1739457988-aTRqcBEKKTuX1Jz7Di9vIrRrMjQ6TPSY-0-aa803b1c389545f38bfd493292cbf780)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0001.jpg?sign=1739457988-NjszjqjvrOUhKfd4QnYKKgT6cIEoRlGn-0-ceb6cf2b473504db7d52cc435bcd77c8)
5.填空:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0002.jpg?sign=1739457988-mZBQb9vUTEWU4h5OWpx2vOcIX9gLuphV-0-2832af4e9c9f9a6d65e3fd5bcc78f376)
6.计算下列行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0052_0003.jpg?sign=1739457988-UtUITHqCbkUiPO99l4pso1ZmPzse5Q9v-0-30fcec00c5b6414ab295d00f758a8910)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0053_0001.jpg?sign=1739457988-FrBYqSn8LhUA57OGcTLVXOioSFtPO3BZ-0-2e49beab073924d43e8c0399690abb18)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0054_0001.jpg?sign=1739457988-eREFRlFc90gWYvA7AArXrXPsRRT2yE5D-0-b32fb194d0a87ee4d5516d94759d6426)
7.计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0055_0001.jpg?sign=1739457988-D9Ij8LWgggkIbhINMmVWWKDiLLooEg7O-0-555e5d9277b1753ce66684fd892464bb)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0056_0001.jpg?sign=1739457988-rJ8iIFWzgNyx6MjJq6tV7AXQVIakL03M-0-ae9ba160b185d538e200739e43073409)
8.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0056_0002.jpg?sign=1739457988-i1ZFsKXQBMyBaO7dFMBtjWbksv3fW7oQ-0-1eeda24bc697322f5dd294c01be15c3a)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0057_0001.jpg?sign=1739457988-Ace9U1AsMNiRLhNFNo6gf3PnC2OvPN5C-0-5a2d4a27963fd5ab58c83320a3b388a0)