![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
上QQ阅读APP看书,第一时间看更新
本章复习提纲
1.2阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0062_0003.jpg?sign=1739459926-YolaiayMOUK8kuoxYx6Y3KUpFoTANMrC-0-a594998bf52cad00e4c67bd775d8fd4a)
3阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0062_0004.jpg?sign=1739459926-hdqsvyyn2RC9q9rH0iYBPwYqgD6b7QsZ-0-9441b1123e12a8720cf942c3c6677b32)
n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0062_0005.jpg?sign=1739459926-REPNtWaN7b4uhC0sf2SqqzD5yxavTS2z-0-d8b7ee79c67ab2cbb296a4119953dd26)
其中A1j=(-1)1+jM1j,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0063_0001.jpg?sign=1739459926-CuOSPjrRnv1YodnNZb35oLqFHPN9QeTa-0-4b737d01411e581c66390df9d8ab1170)
2.行列式按一行(列)展开公式:
|aij|nn=ai1Ai1+ai2Ai2+…+ainAin(1≤i≤n),
或
|aij|nn=a1jA1j+a2jA2j+…+anjAnj(1≤j≤n).
其中Aij=(-1)i+jMij为元素aij的代数余子式,Mij为aij的余子式,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0063_0002.jpg?sign=1739459926-7RIuf99zlFHxTRbMyyrLMp0FN0Vma0Hp-0-a3cad4d7021f2653da6dc2fc5901b432)
3.行列式性质
(1)行列式|A|与其转置行列式|AT|的值相等.
(2)用数k乘以行列式|A|的某一行(列)的各元素,等于k|A|.
(3)如果行列式中有一行(列)元素全为“0”,则行列式值等于零.
(4)行列式可按某一行(列)拆成两个或多个行列式之和.
(5)对换行列式的两行(列),行列式值反号.
(6)如果行列式中有两行(列)元素对应相等,则行列式值等于零.
(7)如果行列式中有两行(列)元素对应成比例,则行列式值等于零.
(8)将行列式某一行(列)的若干倍加到另一行(列)上去,行列式值不变.
4.行列式的计算
(1)用行列式定义.
(2)按一行(列)展开.
(3)用行列式性质将行列式化成上(下)三角形.
(4)用下列公式计算(*为任意数)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0064_0001.jpg?sign=1739459926-v5Lb7ZRo4DOdZShcCtuRKS9yYhZKTzDl-0-7c4bee6e1503ca0ec45d5a096ca657a3)
阶行列式,i=1,2, …, s.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0064_0002.jpg?sign=1739459926-JqqgfBFGq7Gt0IjKbVbP9SWCpXrranTO-0-d23728a7c20b1e6abd306858a2e8efd1)
行列式,i=1,2, …, s.
④ 范德蒙行列式.
⑤ 奇数阶反对称行列式值等于零.
(5)对于n阶行列式,先计算n=4或5阶行列式,找出算法或答案的规律,从而推出n阶行列式答案.
(6)解方程
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0064_0003.jpg?sign=1739459926-OSRkyGUIzApPlDR4k6C2cqmEkcJZL32l-0-5fd08444455d5c409d3dca785a09e05b)
5.克莱姆(Cramer)法则
(1)推论,方程个数等于未知量个数的齐次线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0065_0001.jpg?sign=1739459926-1zggBfGPJWTDWnVrXqauCihb4Shz8X3e-0-035c023aea407d8f60d943dcbe098a44)
当其系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0065_0002.jpg?sign=1739459926-8mD50Y6vxAw9Ap1Ufb9s7TuCt8QWxciV-0-d7443b6f6cdf077e6f64b4d81329f6ab)
时,只有零解.
(2)推论逆否命题:方程个数等于未知量个数的齐次线性方程组,如果有非零解,则其系数行列式等于零.