![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.1 n阶行列式定义
导学提纲
1.何谓2阶行列式?怎么计算2阶行列式的值?
2.二元一次方程组解的公式?
3.何谓3阶行列式?怎么计算3阶行列式的值?
4.三元一次方程组解的公式?
5.何谓元素aij的余子式M ij?何谓aij的代数余子式A ij?
6.何谓n阶行列式?
为便于记忆二元一次方程组解的公式,引入
定义1.1.1 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1739458915-K6uTT5fVXkZ7moj7IeNWBZJ6XuXdXwvw-0-abd88ab7c3b4edc3aa8c6a3908fd29d8)
称为2阶行列式,它表示代数和a11a22-a12a21,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1739458915-aa3ZDT8qfxyadQ6id6jy6FJPn64DJdYT-0-f932f9aff0b9a8e32deb2e680fbccece)
2阶行列式中,横排称为行,竖排称为列.位于第i行第j列的元素ai j称为(i, j)元(i, j=1,2).a11, a22称为主对角线上的元素;a12, a21称为次对角线上的元素.2阶行列式的算法是:主对角线上的两个元素的乘积减去次对角线上两个元素的乘积.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0003.jpg?sign=1739458915-TInoLhCtkPuQZ2g4h4KOXycR6eQfrVWz-0-04f67d770db482d5e29b219c6c4590d1)
定理1.1.1 二元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1739458915-UBmD7R2PB3lFftBX0zTW4hPtaWlgd0oa-0-1d808134ae1beddacc0efa0a97bd8d85)
当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0005.jpg?sign=1739458915-kPNOtlEhDBUUHBwpaKFlHTn2d0Rp0Y9X-0-e80c817cefa77c3bd3ba78e1a4e26609)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0006.jpg?sign=1739458915-nPWTzhqXibiJ1WGB0apNgwy8hDMwRm2B-0-f26a19ad03885b08d81be2c2d81825c3)
证 ①×a22-②×a12得
(a11a22-a12a21)x1=b1a22-b2a12,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0001.jpg?sign=1739458915-KP7Rvh2ftqeeYgWSeRRbADLiveDyvf0V-0-4f8f66d53137b995b82228854aac339a)
②×a11-①×a21得
(a11a22-a12a21)x2=a11b2-a21b1,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0002.jpg?sign=1739458915-d5suqzhxZENQ6TpFHqDNFZHmHe0rzs5Q-0-7ad881e211d809d1c981b6ac8cf75b26)
例1.1.1 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0003.jpg?sign=1739458915-UsMg6XEesm8LTGMOssyksfq4LqSFrLti-0-daa4533ad12276221d2d4d508d7b40fb)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0004.jpg?sign=1739458915-2iYWk3L6wcNN7XMSlpO4xpnBftEGF5xD-0-e810df1df6a0176540f62590fa8be647)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0005.jpg?sign=1739458915-IBKH44Tyt7esotLaOYIxKd8TzI6i1Mcf-0-657c00780beaf6d76514270501c86f92)
(读者可将解代入方程组验算之).
用加减消元法解三元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0001.jpg?sign=1739458915-fjwC65H907UM2bvo3Onl8uzjb7GPuGao-0-76df7674d2eeb9cd8cf3c03a23a9a31b)
得
定理1.1.2 三元一次方程组(1),当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0002.jpg?sign=1739458915-czKXUVMoDNaGs36hhMufNS4agpUBteyA-0-9eee159ed078a256b58beb8a58ce6248)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0003.jpg?sign=1739458915-d0trJ6ID0HYJ9ubLYAlchxPC5vmX79VH-0-feacb44ff2d494a073650decb274c136)
为此引入
定义1.1.2 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0004.jpg?sign=1739458915-oxE2WNU7LDPQrlR6NsNx9EWktv3BCqTO-0-29a2fb4e8dc16b21ecdce8446e4a2922)
称为3阶行列式.它表示代数和
a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31.
即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0001.jpg?sign=1739458915-mzEbvnsdCofQmJrhfSp6oErkorJMrvBK-0-4b1740f7472161d36e3d9406c0263fd7)
3阶行列式等于3! =6项代数和.每一项都是取自不同行不同列的3个元素相乘,主对角线方向三项前面带正号,次对角线方向三项前面带负号.3阶行列式算法如下图:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0002.jpg?sign=1739458915-0IRxra7HvU6g7whnjz8myeVr4TyOgQHG-0-2c8aa226801fdb9ccab03c9cbb38d39e)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0003.jpg?sign=1739458915-9MNAg1IsEqpIyOUdqPhIR4yWH1KkUCga-0-48180c2a5d5255bf42d3ebfb8a4ed85e)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0001.jpg?sign=1739458915-2Uzjr4tzLFoS4Gp3KAoEHg6lKoO6efAo-0-1e70d4ffcd275b6e142e081e516849a7)
例1.1.2 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0002.jpg?sign=1739458915-xuCyk3XjFp1FVLDOSRGfYfmIjsWdrYkV-0-b050c373d2c677ee71ac28bf59207ade)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0003.jpg?sign=1739458915-FFS8ba1K7w5ngT4LYOMIviPwCkWxcnp9-0-e483386db4b8468bfaf4ce9fdbd46126)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0004.jpg?sign=1739458915-EIcIrqStPlT6KUsGxBkEyGN7k66X0opT-0-fc9dedba14dbabaf726d144ea57b909f)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1739458915-qj9QXRLsbzdUdL4dXqcDuHaoi7I3y2Gu-0-f41470d1c6f519c7cfe7b52affd91cd4)
(读者可以将解代入方程组验算之).
例1.1.3 解方程
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1739458915-Tr2XzEx6ZGf15vzNC5C8C7g9VEdY1NyN-0-397aa6fb08da9ad71cf58c035e304593)
解 (1)左边=(λ-3)(λ+1)-5=λ2-2λ-8=(λ+2)(λ-4)=0,
所以方程有两个根:λ1=-2, λ2=4.
(2)左边=(λ+1)(λ-3)(λ-2)-(-1)×4×(λ-2)=(λ-2)(λ2-2λ+1)=(λ-2)(λ-1)2=0,
所以方程有根:λ1=2, λ2=1(2重).
定理1.1.1和定理1.1.2可以推广到n个方程n个未知量的一次方程组情形(见 §1.4).为此需要引入n阶行列式定义,先分析3阶行列式与2阶行列式的关系.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0003.jpg?sign=1739458915-4mdTyvKvItpCI7uzr05vYCUiN20STtrv-0-05d41edaa8bc24e2686b184925cbaa2b)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1739458915-r6rBCD5e1hXEt7ZBtZKsTeazcjWmVJNA-0-2970c7fbcc61c767d31533bb6fe540cb)
定义1.1.3 行列式中元素aij的余子式Mij是指去掉aij所在第i行和第j列元素后余下的行列式.aij的代数余子式Aij=(-1)i+jMij.
例如,3阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1739458915-LTwA3FabXFnuOTkSsoiuC5LGOE3Xvry5-0-743512f739eaeb702cc552c7453ef61f)
中,元素
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0003.jpg?sign=1739458915-LMyY9RRkkiJgQZEvCOwRTtmu6EfLecd4-0-8482be40dbba3088658e7a3ec8e3510f)
所以3阶行列式还可以定义为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0004.jpg?sign=1739458915-IHIAKFMvwtD6hUnycaLOHh3ivTufCvZV-0-e122c0644027250710c18048aaa18bbb)
即3阶行列式的值等于第1行每个元素与其代数余子式乘积之和.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1739458915-QJOb7gsy7kbaewgcnruQwskH05xGdfms-0-48157032d1e58b289e1cb6a2d3aebb70)
现在我们归纳出n阶行列式定义.
定义1.1.4 n=2阶行列式已经定义(定义1.1.1),假设n-1阶行列式已经定义,那么n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0001.jpg?sign=1739458915-Bhb9A8t0A6cHAoFBovLL5KgB0NVsl1ve-0-435226de9185695b59e2ac8adc9fab7a)
其中A1j=(-1)1+jM1j,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0002.jpg?sign=1739458915-A9yyDn65rfBcwpLOey9IyrK4xx32b8Jo-0-4f0d97c36329b2670b81bfd9c5c98ec2)
或简单记作|aij|nn.
例1.1.4 按定义计算下列行列式.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0003.jpg?sign=1739458915-UTlGBy7aAKkF8o6s4mCRw9xvc1Zix6cH-0-01b06ecd1fb2c96ee735381683232e3f)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0001.jpg?sign=1739458915-j4VZOFfW4xDjCAkn8U1WidYZwOstey88-0-ca9e1e26d46fcf838826eb761d614949)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0002.jpg?sign=1739458915-UeCyhKFenG0viwNxcqAcV0ipzwWHh76Y-0-15f9f70bb11140d5e1912a167e3141e2)
一般地,n阶下三角行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0003.jpg?sign=1739458915-MzwEFPvq3jlkHDAooZAjKTybGyaMhg8a-0-14ef18fd98206c7333e5fa10dba8e165)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739458915-HiqZzbJjYNTahgEC4OYfDfGkLR9ZFI46-0-9448eb4c93aef2faac9163433e0b812a)
第(3)题答案说明4阶行列式中次对角线上4个元素的乘积前面带正号.
可见,对于n≥4阶行列式,2、3阶行列式的对角线算法已不适用!
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1739458915-ckU4YITgwvMMEUS3fOPf0zKg2nnelLWx-0-bfeea3c75ae8eb81929dc7b72d2ae1b5)
第(4)题可以作为公式用.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1739458915-Z6ihelRHvwaVlb8X2fng4qclVUliqJ6G-0-72ff3f2cef3ecae04d306daad14eb028)
一般地,设|A|=|aij|r, |B|=|bij|s,那么有公式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1739458915-xgWfrssQKgVuXMPDoJuunP8oRiQBLaDj-0-0e4850d6e66d422e44f5beb42f0d37d8)
习题1.1
1.填空题:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739458915-lhrMd5g31Prvx1X225rQDercmMlr2GXs-0-f051151b830e1907e0ca68175b05d6be)
2.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739458915-aiJbY7tEBa6l1tg65EtVOu0vwEinm7T9-0-41ff95039fcafb5fe2a40264adf969a8)
3.解方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739458915-zN2V2jLBJdeKeeoHfEhAVN6bQKgQvMAM-0-fcab62755f86f34675a2cd83df022d50)
4.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739458915-T6dUjX8a6DrFt5tJy6xf5r0rWpcXzg9C-0-f4e9ab9e25918d0b167877e85a71bc6f)
5.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739458915-J31U1HfHpA79voIbPLnkSotASxv37dsG-0-ee9c0741e73c6afb48c1cb2cc712fd47)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739458915-h0DjlMcvIZKpDVYofJqQOxDimAizmjSN-0-756ba293a0d454cfbdee07a23666a911)