![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
定理2 如果函数x=f(y)在区间Iy内单调、可导且f′(y)≠0,则它的反函数y=f-1(x)在区间Ix={x|x=f(y),y∈Iy}内也可导,且
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078003.jpg?sign=1739946620-neFQQXjAnVMIHqEcUctFsJq1TEiVLXF9-0-a04f191c6e30341e32ee1bb2eb4a281b)
证 由于x=f(y)在区间Iy内单调,故其反函数y=f-1(x)在区间Ix存在、单调且连续,因此,对于任何x∈Ix,当Δx≠0时,
Δy=f-1(x+Δx)-f-1(x)≠0,
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078004.jpg?sign=1739946620-8EdmmQKiO35igv3fMYZa1Cj5BdBV1FMq-0-15bdc5e8c20a0b0ac50bc213938ed09d)
由于x=f(y)与y=f-1(x)的连续性,即Δx→0时,Δy→0,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078005.jpg?sign=1739946620-p2yZzEP5MA3S8EBjD6wKlhqTAetgMT8W-0-fc9dbd242e3cb59abfa15276e1dd3de6)
例7 求y=arcsinx的导数.
解 设x=siny,,其反函数为y=arcsinx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078007.jpg?sign=1739946620-G3c31224cmNAZcTQsdAcUeZ42FA6wcr8-0-39870f75e88559c2a3115af2857e00be)
又由于,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078009.jpg?sign=1739946620-0ty257jsFisHbn9CuJCVUAu6BYWSXHmp-0-0f728ffce6137dcf06f3c1a28a998563)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079001.jpg?sign=1739946620-C7IAKQ1dcJinb6KaxPPtN7iVtKGWsU2v-0-5ce6ec494dc4bcebff85d10183bfedb8)
例8 求y=arctanx的导数.
解 设x=tany,,其反函数为y=arctanx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079003.jpg?sign=1739946620-RJBk4rdDqAUTsr5P6TGPY4MkKU6FMwDe-0-fa6bd4d362b445263293553a8d2b1bb6)
又由于sec2y=1+tan2y=1+x2,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079004.jpg?sign=1739946620-hy8TqcJXZX2cSZUkmcksAE22mQNvRWB4-0-95a917355ccefab256e0c1ce4c9040ee)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079005.jpg?sign=1739946620-h9BVIdYcKGYZuR1Zn8ypS6wzqzfVxiFx-0-d7f569c4ce62ad90f7ee000bb23a695d)
例9 求y=logax的导数.
解 x=ay与y=logax互为反函数,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079006.jpg?sign=1739946620-cNJhBFydRNu0gqaXCxd3FGCVjoxP6MHH-0-faa8bb07a7ecd3c3033325cd17c39ddd)