![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.2 第二重要极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035017.jpg?sign=1739173980-n6cJaTZ0eKl3AnxLC1yVunfi3v9sWrDU-0-aa52279497681e6f0e245711c117471a)
可以假设自变量x取正整数n,计算出相应的函数值,列表进行观察来理解第二重要极限(1-2).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035019.jpg?sign=1739173980-UwuIwQECKmyNB5Ni9CjU5Vptl4jq544a-0-060746f55d85ecc2d306ee9307bee992)
通过观察发现,当n→∞时,→e,其中e为无理数,它的值为
e=2.71828182845….
与第一重要极限同样重要,要较好地掌握第二重要极限,必须认清它的特点.
发现:(1)函数 的底数、指数均有变量,称为幂指型函数,其中存在倒数关系;
(2)极限 ,当x→x0或x→∞时,□→∞,其本质为:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036004.jpg?sign=1739173980-OyibGXPycg3nGh3qja7i5Bv11uSgkwhg-0-8df54ece7afdae01e2f364fbb94297c6)
利用代换 ,当x®∞时,z®0,第二重要极限(1-2)又可以写成
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036006.jpg?sign=1739173980-KrbcB99Toi4KIaLRTdVkaILzyQVKDfFd-0-aa754cf6fb56700f5f147866da9c643a)
(3)极限属于1∞型,以后遇到1∞型的极限可考虑是否属于第二重要极限.
例6 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036008.jpg?sign=1739173980-LVI3ob3gmJ8j9hyEY7vue4RWIzmpa45r-0-1b0b5c82b8b24964d1501143f31c134c)
例7 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036010.jpg?sign=1739173980-6sgcLxmi0nzRcHFbYswAQFi1kUHd0ZP7-0-b97c7bb6838be3a992337da285c0892e)
例8 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036012.jpg?sign=1739173980-SZfXpCQwDmk2mxdBml1leTix0xgkJFJH-0-af47194f47cf6ae7345f756aa31a627d)
例9 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036014.jpg?sign=1739173980-BOkvo05Y2qV9Rh3Ft7zvbOI8FL23q7Af-0-9d1caae2a468d25342a7193aa31a4261)