![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
2.6.3 微分的运算
从函数的微分的表达式
dy=f'(x0)dx
可以看出,要计算函数的微分,只要计算函数的导数,再乘以自变量的微分即可.
1.基本初等函数的微分公式
(1)d(C)=0; (2)d(xα)=αxα-1dx;
(3)d(sinx)=cosxdx; (4)d(cosx)=-sinxdx;
(5)d(tanx)=sec2xdx; (6)d(cotx)=-csc2xdx;
(7)d(secx)=secxtanxdx; (8)d(cscx)=-cscxcotxdx;
(9)d(ax)=axlnadx; (10)d(ex)=exdx;
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00071001.jpg?sign=1739176186-gTmnCVB28AjdD9Q7vJ3wx7pDjYLT0Tck-0-0ad8fe7206c6abf5bd9898548c77bc88)
例2 设y=ln(1+2x),求x=1处的微分dy|x=1.
解 因为,
,所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00071004.jpg?sign=1739176186-86QgE6aJek1OGGD68bXIO8GYoCOmpKe0-0-3d714cd64bdc4363ae1e3ec8ec34d340)
例3 设y=cos(1-3x),求dy.
解 因为y'=-sin(1-3x)·(1-3x)'=3sin(1-3x),所以
dy=y'dx=3sin(1-3x)dx.
2.微分的四则运算
设函数u(x),v(x)(简记为u,v)均为可微函数,则
d(u±v)=du±dv;d(uv)=udv+vdu;
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00071005.jpg?sign=1739176186-T8htEpKrPkbqM2zbAR8pHym3otMt0XE2-0-08de6c17290a95f4adf81fe2372615a8)
特别地,当u=c时,d(cv)=cdv;当u=1时.
3.复合函数微分法
设y=f(u),u=φ(x)的复合函数为y=f(φ(x)),如果u=φ(x)可微,且相应点处y=f(u)可微,显然有
dy=[f(φ(x))]'xdx=f'(u)φ'(x)dx,
由于φ'(x)dx=du,所以得到公式
dy=f'(u)du.
发现:与一般函数y=f(x)的微分dy=f'(x)dx相比,无论u是中间变量还是自变量,其微分形式一样,微分的这一性质称为一阶微分形式的不变性.
例4 求下列函数的微分dy.
(1)y=3ex-tanx; (2);
(3)y=e-3xcos2x; (4.
解 (1)dy=d(3ex-tanx)=d(3ex)-d(tanx)=(3ex-sec2x)dx;
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00071009.jpg?sign=1739176186-RL4lri3ZQ0yGR4Vl1gWv9OryhTKEkevX-0-57bcfe5ea13fc0a10972d9c602510c7e)
(3)dy=d[e-3xcos2x]=e-3xd(cos2x)+cos2xd(e-3x)
=(-sin2x)e-3xd(2x)+cos2x·e-3xd(-3x)
=(-sin2x)e-3x2dx+cos2x·e-3x(-3)dx
=-e-3x(2sin2x+3cos2x)dx.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00072001.jpg?sign=1739176186-raMt9xhicvQnfT4ZFnkjPiZBRbSal00g-0-d3fb49f72819fde07914617c66d9aeef)