![化学热处理实用技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/199/41807199/b_41807199.jpg)
3.2 气体碳氮共渗工艺及应用
气体碳氮共渗表面质量易控制,操作方便,是目前应用最为广泛的工艺。常用的气体碳氮共渗介质可分为两大类;一类是渗碳介质中加氨,既可用于连续式作业炉,也可用于周期式作业炉;另一类是含有碳氮的有机化合物,主要用于滴注式气体碳氮共渗。
3.2.1 气体碳氮共渗的温度和保温时间
气体碳氮共渗的温度和保温时间见表3.14。
表3.14 气体碳氮共渗的温度和保温时间
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image317.jpeg?sign=1738911419-Gh5DAs2IZMDRGesVC1RYLjXcd3DoZpFD-0-d3c78f80094861da13826f0628677be8)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image318.jpeg?sign=1738911419-mdsx1j1WU4hjPQIIUQlncu1fYxYJKK4t-0-dc41e2cfe300e900d11dccf1da6bcb97)
图3.9 碳氮共渗温度、时间对渗层及表面碳、氮含量的影响(渗剂:煤油+氮气)
表3.15 共渗温度对渗层表面碳、氮含量的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image319.jpeg?sign=1738911419-rt9c7HEVICUIDjsaCtoRlOuvzRtXkMkO-0-672593ce13ec2c62a9171034e19a8c74)
3.2.2 气体碳氮共渗介质
气体碳氮共渗介质的组成、气氛及用量见表3.16。
表3.16 气体碳氮共渗介质的组成、气氛及用量
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image320.jpeg?sign=1738911419-BidyFaVVodOrhQ072QXuSt8Dut4HPVU9-0-66b4fabbbc7be9e192800607c17aeec5)
表3.17 常用气体碳氮共渗渗剂(介质)的组成
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image321.jpeg?sign=1738911419-KVBg60p6RRYonIpXoClc1HwlYLRghQMP-0-b50bd1273f30394259bd0e690afaf9e6)
表3.18 几种不同渗剂对碳氮共渗工艺的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image322.jpeg?sign=1738911419-EnREwt7ycS46KLbLo0uvrUx4MAndWrEw-0-249cdae1c316fc0bdc429d9dc38513d9)
注:1.渗层深度为0.70~0.85mm(测至1/2过渡区)。
2.渗速是按保温时间计算的。
3.碳、氮含量为表面至0.1mm深度内的平均值。
表3.19 常用的两种碳氮共渗剂的组成及特点与碳氮共渗气氛的测量和调整
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image323.jpeg?sign=1738911419-34hBg0e3ZBj1BFvVcOAwCJYdkUUq5Ot8-0-5231b59885acaf107be01e6330e98386)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image324.jpeg?sign=1738911419-1Hnc0Mzkz224ohndFbIxLJcz6RqB6KSQ-0-e0df914b26e56e70c7a1951a9cff3118)
图3.10 氨加入量对炉气内碳势、氮势的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image325.jpeg?sign=1738911419-xVXG52JRR1i8xqabOy6ozSw5dOs1pu6Y-0-457d38dced9582217acb3d2184ff03ad)
图3.11 碳氮共渗气体中的氨量对硬度梯度的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image326.jpeg?sign=1738911419-U8rskFoJG8Z7blhdnhjJ1qAGSFM53DMQ-0-14563a6459a170a4d61b931dbf19c939)
图3.12 用三乙醇胺碳氮共渗时渗层中的碳、氮含量
表3.20 气体碳氮共渗时渗碳剂与氨气用量
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image327.jpeg?sign=1738911419-v6PRcvT5GSk7SPcTYW1YM8MUPMzZHhWv-0-ac31400a5946bbb3ff9600089aa24ce4)
注:1.煤油产气量按0.7m3/L计算。
2.共渗处理温度840~860℃。
表3.21 三乙醇胺在不同温度下热解后的成分
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image328.jpeg?sign=1738911419-IGS6xstRDMJpIis1ibjiUpsDc6s4eEgu-0-377fa822c8aa4b87ced1ba246dae5bbc)
3.2.3 气体碳氮共渗工艺
3.2.3.1 井式炉气体碳氮共渗工艺
(1)滴注通气式气体碳氮共渗 以煤油、甲苯、二甲苯等液体烃类为渗碳气源,通过滴量计直接滴入炉中;而氨则作为渗氮气源经由氨气瓶、减压阀、干燥器和流量计进入炉中。介质的用量视炉子、炉温不同而定。图3.13系40Cr钢制汽车齿轮的滴注通气式中温碳氮共渗工艺曲线。所用设备为RQ3-60,获得渗层深度为0.25~0.4mm,表面硬度>60HRC,表层(0.1mm处)碳的质量分数为0.8%,氮的质量分数为0.3%~0.4%。
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image329.jpeg?sign=1738911419-Ai4vkwsKAhuU30MNlP9M91rSyTR7YyY0-0-ca6196629e890a22424c9ce2d5871095)
图3.13 滴注通气式中温碳氮共渗工艺曲线
(2)滴注式气体碳氮共渗 将某些同时含有碳和氮的有机液体送入炉中,或采用注射泵使液体呈雾状喷入炉内进行碳氮共渗。对含尿素的渗剂,为促使其溶解并增加其流动性,应稍加热(70~100℃)才可滴入炉中。另外,为降低成本,在装炉后的升温阶段和共渗前期,可滴入甲醇或煤油进行排气。图3.14系20CrMnTi钢轿车后桥从动齿轮的滴注式气体碳氮共渗工艺曲线。渗层深度为1.0~1.4mm,表面硬度为58~64HRC。
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image330.jpeg?sign=1738911419-dfHCToek0t9SN2EWbzFqjdyb3QKcc8WI-0-4aab032510305811825790953cea84fa)
图3.14 滴注式气体碳氮共渗工艺曲线
(3)气体碳氮共渗工艺及特点 一般分为排气、共渗、降温三个阶段,工艺及特点见表3.22。图3.15系30CrMnTi钢拖拉机变速齿轮(m=4.5mm)的两段式气体碳氮共渗工艺曲线。所用设备为RQ3-35,获得的渗层深度0.6~0.9mm,表面硬度>58HRC。
表3.22 滴注式气体碳氮共渗工艺及特点
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image331.jpeg?sign=1738911419-voh7DdwZOcIW3ZWrCfyzZKlOjK6M2h5o-0-2aa35e336ad5aff4960c1286aaab8cf0)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image332.jpeg?sign=1738911419-keZJl668rZ6AECGtacwcHgNF9VOnd6I5-0-7bf16eacdcbcb3691060bb22b2aeb1bf)
图3.15 两段式气体碳氮共渗工艺曲线
(4)气体碳氮共渗工艺规范
①碳氮共渗用物质的技术条件。ⅰ.共渗用的煤油应为渗碳用煤油,共渗用的氮气为工业用液氮。ⅱ.共渗前要检查管路系统、煤油和氮气通入共渗炉内的管路、阀门等应保持畅通,控制准确。
②共渗件的技术条件。ⅰ.工件表面无锈斑、油污,应经过机械加工。ⅱ.吊挂在工装上的工件,相互间保持一定的间隙,特别是共渗部位,应有5~15mm的间隙,确保炉气畅通。ⅲ.共渗用的试样应放置在与同炉工件碳氮共渗条件相同的位置,作为质量检验的样品,每炉至少放三根试样,并放在不同的位置上。
③渗罐操作的注意事项。ⅰ.非连续生产使用的碳氮共渗炉,应进行共渗前的渗罐工序,即将共渗炉从室温缓慢升温至650℃时,开风扇排气,可滴入少量煤油,60滴/min,通氨气0.25m3/h,保温1h。ⅱ.继续升温至850℃时,滴油量可控制在100~120滴/min,通氨气0.5m3/h,保温1h。观察排气孔火焰颜色和火苗长度,以便调整。
④工件的碳氮共渗操作的注意事项。ⅰ.渗罐结束后,开炉盖装入碳氮共渗工件后封炉,升温进入排气阶段,滴油40~60滴/min,排气0.5~1.0h。在此期间,观察火焰是否正常,若正常,排气阶段结束,否则应延长排气时间。ⅱ.碳氮共渗在850℃进行,保温2~3h,在此期间,滴油量为120~130滴/min,通氨气0.25m3/h,观察火焰颜色和火苗长度,及时调整滴油量。ⅲ.共渗结束后,出炉淬火,油淬到室温控油。ⅳ.工件共渗淬火后,应及时在(200±10)℃保温3h,并低温回火。
⑤碳氮共渗件的技术检测。共渗层硬度为56~62HRC,共渗层深度≥0.18mm。
碳氮共渗通用工艺见图3.16。
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image333.jpeg?sign=1738911419-NkoYRi2VYHNHnVaNWKyeMX0x0IWzQOwN-0-1bfbf5e2b364e22cdd21ccacb7a9b3c2)
图3.16 碳氮共渗通用工艺曲线
(5)井式炉气体碳氮共渗工艺操作 其渗剂与氨的用量见表3.23;两阶段井式炉气体碳氮共渗层深度和保温时间的关系见表3.24;共渗时不同阶段介质的用量见表3.25;共渗时的炉气组分见表3.26;共渗后的冷却方式见表3.27;井式炉气体碳氮共渗工艺操作见表3.28。
表3.23 井式炉气体碳氮共渗时渗剂与氨的用量
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image334.jpeg?sign=1738911419-nj9cByDN2t1mjEUykGNdPrO4RtrqRDSr-0-1d2fe94ea1482d54b62e63057c2e5c83)
表3.24 两阶段井式炉气体碳氮共渗层深度和保温时间的关系
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image335.jpeg?sign=1738911419-koZzAweQolJwLNTfWOauNMEiNdTBOnH1-0-9ca388d2ef06eef7d37812ba707e8528)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image335-1.jpeg?sign=1738911419-lGaoHLbGToAx0AwiqJvTUpMgbMZoma2H-0-3807ccf969ddbc94cb286ec03f73741d)
注:1.用60kW井式炉气体渗碳。
2.高温时煤油110滴/min,NH31L/min;低温时,煤油70~80滴/min,NH34~5L/min。
3.工件入炉排气,煤油100~110滴/min,NH32L/min。
表3.25 井式炉气体碳氮共渗时,不同阶段介质的用量
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image336.jpeg?sign=1738911419-BkMeUuZNmbp6W3d7lwRNTTtuBo4KYAph-0-0eb3904ad116e43fd193604ce474f310)
表3.26 井式炉气体碳氮共渗时的炉气组分(体积分数) 单位:%
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image337.jpeg?sign=1738911419-IDLPRehP4fkJWI9nAJ5yR4dBm9sPQQgK-0-87b2dcc786540bcfd7ba6b93f1503ffe)
注:共渗20min后,取气分析;末期φ(CO2)0.4%,φ(CO)20%,φ(CH4)1.2%,φ(H2)34.2%。
表3.27 井式炉气体碳氮共渗后的冷却方式
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image338.jpeg?sign=1738911419-LcUse84ANpxVA4diQ2VJo3KvpMx6MzFB-0-caed561094bd43c443f7e586d2509362)
①括弧内材料为普通碳素结构钢旧标准(GB/T 700—2006)。
表3.28 井式炉气体碳氮共渗工艺操作
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image339.jpeg?sign=1738911419-ZtruvgSpywTrZO1yAY6eHFe7fQF84lew-0-db1eaba3072cdbf75925a638a464e3a8)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image340.jpeg?sign=1738911419-TdkLtfkkfsdbJlTNpvSh9uH2rUkTDVqp-0-5eda3320d339132cec3cb6bbd67990f1)
3.2.3.2 通气式气体碳氮共渗
它是以吸热式气体为载气,添加少量渗碳气体和氨气进行碳氮共渗,介质的用量应根据其组分、炉子大小、炉温以及炉中碳势和氮势而定。
(1)密封箱式炉气体碳氮共渗工艺
①25、20Cr、20CrMnTi钢。在密封箱式炉的气体碳氮共渗工艺见表3.29。
表3.29 密封箱式炉气体碳氮共渗工艺
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image341.jpeg?sign=1738911419-eHIohav9KHyhaZBt4qVwUGNh4tSF27Wx-0-9829ec839b5c839a99faf62349d581ab)
②20MnCr5(20CrMn)钢制变速箱输入轴(其结构见图3.17)在密封箱式多用炉内气体碳氮共渗。其渗层深度0.5~0.7mm(550HV1),表面硬度690~790HV1(81~83HRA),表面组织为M+A残留(1~5级),心部硬度为320~450HV1。
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image342.jpeg?sign=1738911419-1xlpYkBAQgtnWpSVpSGZQtWZxOr9eexL-0-94373a23867bfc5ce6ce5ffcc8c7af09)
图3.17 20MnCr5钢制变速箱输入轴结构简图
多用炉内饱和气为N2+CH3OH,富化气为丙烷C3H8,NH3经减压过滤后通入炉内。20MnCr5钢制变速箱输入轴在多用炉内碳氮共渗工艺曲线见图3.18。
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image343.jpeg?sign=1738911419-bDp71QOAl56PgfcpLEj9RtA164PKFSqt-0-09d4abdf45e78a46039ac7d81fcef870)
图3.18 20MnCr5钢制变速箱输入轴碳氮共渗工艺曲线(设备:SURFACE多用炉;装炉量232件)
(2)连续式炉气体碳氮共渗工艺
①20CrMnTi钢工件在连续式炉中的气体碳氮共渗。见表3.30。
表3.30 连续式炉气体碳氮共渗工艺
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image344.jpeg?sign=1738911419-T8GrTnbbdIT5qb9KWFziKL98zdOJJsKK-0-55c9a4e418c202d5e397a11656862fcb)
注:1.渗层金相组织为马氏体+残余奥氏体+少量碳化物,心部为低碳马氏体。
2.表面硬度61~62HRC,心部38~45HRC。
3.渗层碳、氮含量指距表面0.05mm之内碳、氮的平均含量。
4.炉膛容积约10m3,炉型结构与连续渗碳炉相同。
5.材料:20CrMnTi。
②20MnTiB钢制变速箱齿轮在连续式电热无罐炉中的碳氮共渗。其渗层深度为0.25~0.55mm,表面硬度为54~63HRC,表面组织为M+少量A残留,表面碳氮含量(质量分数):w(C)=0.75%~0.80%,w(N)=0.2%~0.3%。其连续式电热无罐炉中碳氮共渗工艺见表3.31。
表3.31 连续式电热无罐炉中的碳氮共渗工艺
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image345.jpeg?sign=1738911419-ybtWzaBBTfQy3JJURUm1axUglh2rwTXe-0-6ec747f71b624d8c1257aa1876c920f3)
3.2.4 气体碳氮共渗应用实例及分析
(1)典型气体碳氮共渗件实例 见表3.32,汽车变速箱二轴井式炉、汽车后减震器盘的气体碳氮共渗工艺分别见表3.33、表3.34,自行车零件的碳氮共渗工艺见表3.35。
表3.32 典型碳氮共渗件实例
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image346.jpeg?sign=1738911419-5tSqcXzegGU4JothPuwLLjUUHndJTmxq-0-df937f030c2610e664faeed27715b046)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image347.jpeg?sign=1738911419-WcLRWqShONFbw4bIkIJu7GdFgZcdswlf-0-04d6f322a50dbc7e2a2e0acc89209891)
表3.33 汽车变速箱二轴井式炉气体碳氮共渗工艺
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image348.jpeg?sign=1738911419-U1383bB8lu2rRPm4iDJIp1gitqD76nLy-0-71433cef2521fc28d688a93ebb2e4589)
注:井式炉型号为RQ3-105-9D,每100滴煤油为3.8mL。
表3.34 汽车后减震器盘气体碳氮共渗工艺
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image349.jpeg?sign=1738911419-CkrGijd2KGcm0kX4vXU5i6u43ePHSxeU-0-56a50c82e0500918c36f5bf70ae9c100)
表3.35 自行车零件碳氮共渗工艺(推杆式电加热无罐连续式炉)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image350.jpeg?sign=1738911419-oUR2YVCkUsJxIDJw0BDVYdJlDk8uUajn-0-b4f57d3313d09547a39c755c1d523f73)
注:在油中淬火,然后低温回火,硬度为80~85HRA。
(2)[实例3.1] 20Cr钢汽车变速器二轴表面气体碳氮共渗工艺的改进 见表3.36。
表3.36 20Cr钢汽车变速器二轴表面气体碳氮共渗工艺的改进
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image351.jpeg?sign=1738911419-aeLGr7WsyQdPWCGMX69TyhcqZCKIKINg-0-01bbf2b226b13fef0d4fe328665e21a3)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image352.jpeg?sign=1738911419-4ffEviX2VOmnR6hqRux6ycIOm1BPGj8Q-0-8d44cc4a54f65ec4e2d0af7c157ed3d1)
图3.19 汽车变速器二轴零件示意图
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image353.jpeg?sign=1738911419-OHx4jz4sP0EDzwizBlwseBW0gv1RuAox-0-4ed618c82a12af8c83c3ff9278b2d2d0)
图3.20 原碳氮共渗工艺曲线
表3.37 原工艺生产二轴的质量检测结果
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image354.jpeg?sign=1738911419-0b5CvMjQNi9Y2j2wpg1hba0YIVXWKWFy-0-29f9baedc38393b96fd75ce03c8ba507)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image355.jpeg?sign=1738911419-W7wl1PZDGS6uR6sy8vL4tpnWCiXs5swD-0-62712578c9ac4109795f13fa75a5c560)
图3.21 改进后的碳氮共渗工艺曲线
表3.38 采用改进工艺后变速器二轴的质量检测结果
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image356.jpeg?sign=1738911419-1pCxdW1cKTSoYNKipnBPiYcBPX3OuWx7-0-6ff39e55f7b942d24d87df237b9a899e)
(3)[实例3.2] 20Cr钢制冷挤压模具的气体碳氮共渗热处理工艺试验研究 见表3.39。
表3.39 20Cr钢制冷挤压模具的气体碳氮共渗热处理工艺试验研究
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image357.jpeg?sign=1738911419-lnhngliMPJ3GWBQxYuMYacmdPIvCD6zF-0-bb7f18ff04efdc23c4a23e8799cf65d3)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image358.jpeg?sign=1738911419-MncBQ8q4XQc738Ekqvo1ggmo0kJAw7xq-0-50e81588cfdce548b10d8e866cd3bd43)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image359.jpeg?sign=1738911419-dptnFAY8fC1yZvJYouM5uJYsmlsxvnpm-0-016bd08e8a71194e5352bc49015485bb)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image360.jpeg?sign=1738911419-tCPvmcHyAuQq94vgYvWB0LwH57keJZJF-0-81b4c3fd484bed1e0a9f4c41ceb50f6b)
图3.22 模具工作简图
1—凸模;2—凹模;3—挤压工件
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image361.jpeg?sign=1738911419-Ndcpwcv67FIboxGpdblLoUwkbnZsZksy-0-aaef994abd30cb1d5809cd8dfa6e5096)
图3.23 工件挤压变形图
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image362.jpeg?sign=1738911419-ziRpyjOOXuboSaALEzywKVafHHVtqniw-0-4ef92dd9ba7d5217d805e777552ae526)
图3.24 共渗温度对共渗层深度的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image363.jpeg?sign=1738911419-sQkyynevrTx0xUN7lXWWpspmpHZcZxNr-0-04df5e13d6e54595b4f603755f3c5a68)
图3.25 共渗时间对共渗层深度的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image364.jpeg?sign=1738911419-f9DDT9suGuCmpfk8aIIAl45r8Swz3oSI-0-17da4b859dd49ca28e955e167271a124)
图3.26 20Cr试样碳氮共渗及其后的淬火、回火工艺曲线
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image365.jpeg?sign=1738911419-M1SIHcS6CSZNNuB1TgdYuDJivCaInCjs-0-0f18f50506de324d988aeda235b47969)
图3.27 20Cr碳氮共渗的金相组织(硝酸+乙酸浸蚀,250×)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image366.jpeg?sign=1738911419-GEhQlSScY8KfsmAID5C3zjNCKgZN8IQy-0-3d99c63b3bb2d45b4d356164edb58d67)
图3.28 20Cr共渗层的显微硬度分布曲线