![沼气液化制取生物质LNG技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/772/41807772/b_41807772.jpg)
2.2.1 相平衡计算方程
状态方程是计算混合气体相平衡的有效方法。相平衡计算的目的是确定混合气体处于气、液平衡时压力、温度及气、液相组成之间的关系,本章利用SRK、PR方程,采用C语言编程,计算液化系统中的压缩因子、闪蒸气体的气液相平衡比,对结果采用误差分析法确定计算的正确性。
(1)逸度和逸度系数
逸度是压力、温度变化引起的Gibbs能的变化,即
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P053.jpg?sign=1739664108-53gjICDrg8QRE93WeGR6Na3mAN2HEP4O-0-32a710e1d5ac7b1482adf6f503f6fcce)
恒温下的理想气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P054.jpg?sign=1739664108-LqxdxfRedngo8eli5TE1bSfI0bPgmEPH-0-deb1d39f174070fe3107bd1ac570fe44)
在恒温条件下,1mol纯气体的化学位可表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P061.jpg?sign=1739664108-48efnlAZbr4QduFg7S7Q2a44WV43VIVn-0-abd993438eef2f04b296bdd5b827117e)
式中,μ0为标准化学位。
理想气体,则式(2-20)可写成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P060.jpg?sign=1739664108-17gZiH3S6b9gfDEZlu57Pve0RiwaO83w-0-8426b9586da6eaed7d0fc60b381db030)
式(2-19)不适合真实气体。G.N.Lewis提出以逸度f代替压力,用在实际气体中:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P062.jpg?sign=1739664108-6jNVFwBQmlLIOYjHfAlzG1IEFsPClA0I-0-84d2af39138f71a0ccc6c261171c8d30)
当压力很低时,逸度等于压力。因此
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P065.jpg?sign=1739664108-XJ6RDXxXZkNMZMNSxyLoqjQvBoDSDY18-0-12c7081252493251c24c02b031f4f9bf)
对于真实气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P067.jpg?sign=1739664108-gQPEujQ581RO8WEDjwjq7BT15LZ7wlTr-0-3cb904b9189f06510f3823c611b66518)
式中,ϕ为逸度系数,是压力p的函数。由式(2-23)可知,理想气体的逸度等于它的压力,即ϕ=1。而真实气体,ϕ可大于1,也可小于1,将式(2-22)和式(2-24)合并后可得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P059.jpg?sign=1739664108-6iHXEIAmqVYu3TCJhgaurJxoEqM4L0FL-0-2cb2566d539f244cce494ae3c3e8729f)
积分得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P064.jpg?sign=1739664108-T9dyt1WKFvhin2QiEHIkkvM2akm7w61i-0-af29687521811464c3ece3ae27bbfdcc)
将代入式(2-26),并改写为:p (2-27)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P063.jpg?sign=1739664108-XZE9vy4FTYu5OddNQE1sDWkKkfpXFddG-0-745363524191cdf55fc9388fb88dad39)
当p0→0时,p0=f0,则上式变成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P058.jpg?sign=1739664108-R9EDqWwqPUZkBKXeRNByqbwQlQ7nbDZO-0-39aa5eb53433c44e81d2a3c58ac770ba)
将上式改写为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P057.jpg?sign=1739664108-1puiXhhvSKimrh2lZj64KzZCucZxY342-0-3df4d992e90b74c7bf9746eed4fe548a)
把式(2-28)右边第一项改为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P069.jpg?sign=1739664108-68Qr2PXW1xxMeKUL8j53BGMTvoT1BS9R-0-88eb245c13bc6799b6ca8bb31c58a615)
将纯气体的PR方程代入式(2-28)得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P071.jpg?sign=1739664108-ouMbfGKK0PTiJ5bLpfwGTUQtSPgLpspG-0-c4e1cba0a780672639f841d4def486cc)
合并式(2-30)和式(2-32),得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P074.jpg?sign=1739664108-8VYzjIl0Z8bI3XqYqMDQjyDOF9BgqqCO-0-f35142b5ed67aaca488f2e241eaac08f)
因为pv=ZRT,p0v0=RT,故
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P068.jpg?sign=1739664108-hiPJK1zOQHD0qdwH3mdtk5PSzF0syMR4-0-9251bcbd65e5685dcfe639b6a84d77ac)
当时p0→0、v0→∞,,
,式(2-34)可-(2-1) bv0表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P072.jpg?sign=1739664108-aUDRQYJ7qwfR4tvjqBShQmCtg2YChJcw-0-a253ed20a3b935b595196d8f4d01662c)
又因为
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P076.jpg?sign=1739664108-aTppGtkHb3Wvi3LztzYv50apCfPCh1Xp-0-9d154b709d29ee51295260ddefdf1766)
代入式(2-35)可得纯气体逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P070.jpg?sign=1739664108-fguuNSLBuFUCKSafW4hLSXbT1sqp8bi8-0-55fc9ea10086055c4376ecb39f28a22c)
气体混合物的组分逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P079.jpg?sign=1739664108-PDLfspT4s7t47U19CaCx2Owkp6JRPKi4-0-7c86fa7c7b426cda0eb2a3327401873c)
在温度T、组分yi不变的情况下,由式(2-19)得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P082.jpg?sign=1739664108-FIIQvmWo7LowQ87SQcHVYIm6Ae7usnnn-0-4a0fffcd28de3afbfb5c88b62b4811e6)
将式(2-38)代入式(2-37),即得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P084.jpg?sign=1739664108-cg9M2wxIDfHxZEDOWpoPOnr13HU077OQ-0-9f4b94f2467f32362e418dea05eebfd9)
将式(2-39)从0到p积分,同时将代入上式,则得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P088.jpg?sign=1739664108-3wDFo0B4NiYi98VO65mHTKL10WSkbIa9-0-47437ebdc90a4f32bc8313ec708b4050)
上式改写成
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P089.jpg?sign=1739664108-9IP6qSIDpKdH163F52HJ76FMn6mam79n-0-8aa6025437711f2d629f628248bcd35e)
(2)混合气体的PR方程
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P080.jpg?sign=1739664108-joyKj7n0uluzQp0VuPyDO1bmXQCK9g0I-0-cf8ebbc81084a7f17e788eb8a766d696)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P083.jpg?sign=1739664108-usvIJpEzWbjOfVsQaBGhitiyrqz3Xokl-0-f45329160caa311ecd2b3264b9e11ed1)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P085.jpg?sign=1739664108-QICFowGeK3oPog75U2UGj6g6vQDoVxCf-0-e910c967fb396149f5ce4398369592ba)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P087.jpg?sign=1739664108-o48I0dPfpLRyNkQJd6IUNwUc6Z9whCZi-0-647b7c372ba9aa9c598396fc1cf269d8)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P077.jpg?sign=1739664108-sx2iiYfBtvgQSUambQ9htQgNsr1Smtzg-0-3af07b457a0383a6b239ecbf5a8964ff)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P078.jpg?sign=1739664108-GpRxWV4dIpOtrRML0nPtQeSryPxn18kz-0-fdca33b78371b1aabb6d27b44ae9e646)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P081.jpg?sign=1739664108-hrEEAMN1oZaRueTrKFyoaOsESgaUhsN6-0-93eb4001ac04200a80fc626dcec74632)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K。
PR方程用压缩因子方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P093.jpg?sign=1739664108-rqIlLnQjLqzizGYZEnAbbR6Gkv8oN02t-0-8619028b683d51e3f8b017f49eafa038)
式中,Z=pv/(RT),B=bp/(RT),A=aβp/(RT)2
PR方程计算的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P092.jpg?sign=1739664108-uGO1njcfl48N6tbqgdv7gsrkmiRFjVmg-0-d3c21650d1d6a41de5e45b02f25b2a95)
PR计算式中其他的参数同SRK方程,计算液相逸度系数ϕi,l时,Zi为xi,计算气相逸度系数ϕi时,Zi为yi。
对于纯组分、单相混合物,式中只有1个实根,等于该相的压缩因子;在两相区,有3个实根,最大的为气相的压缩因子,最小的为液相压缩因子,中间无意义。
(3)混合气体的SRK方程
对于多种混合气体成分,SRK方程计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P090.jpg?sign=1739664108-2gcU0Z2aeh9ENZwOxhNodXLW95upWUAl-0-f50c9eaaeca866914123e1fa67d95eec)
式中 p——平衡分离压力,Pa;
T——平衡分离温度,K;
R——摩尔气体常数,R=8.3145J/(mol·K);
Vm——摩尔体积,m3/mol。
a的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P091.jpg?sign=1739664108-deli3VOx7sZaoPjWf52IcRpqIIBk3IiQ-0-14d24b63a314b2fbe22fd0840a802c7f)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P095.jpg?sign=1739664108-g1dwZfLShGVnlQRmm6TTxoUuTxuB07ND-0-97a11cfb2b486bcb28a0f6b5256a5342)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P094.jpg?sign=1739664108-AtmH1qzwYhr4n71FzEPwzqffLVwmeKjk-0-7a06a1556f0a8f7e942482322206fefc)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K;
Kij——二元交互作用系数。
b的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P098.jpg?sign=1739664108-lJAFWjKzB1BQUqn2KtMELeWCRn04SoWg-0-37122cd963e66bf769d0ec6ad6c6a8f1)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P099.jpg?sign=1739664108-Nqx5Uo3nBy7CR3khoWu2DN7xHI3rMywS-0-377aa4cfd787ed8371f8d886ce567434)
SRK方程的压缩因子方程为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P101.jpg?sign=1739664108-YmTmk1dmtuIaHouEF13omE7ZtIKVnmV1-0-4295442ec221580edb4323937633167c)
式中,压缩因子Z=pV/(RT) (2-58)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P096.jpg?sign=1739664108-3WJj4GfRpbRnbgvAdKs6GAYPvkZmQ27Q-0-d4552ee605fd0547b4dfcaef1f01b6a9)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P103.jpg?sign=1739664108-0YPiPwvMGBVJLjumdYs7eErTiiglPs3P-0-452b30b73cab6493cacbbc40b1b98830)
SRK的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P097.jpg?sign=1739664108-Oee9xxA8ChQFvUIcj9ljslaNlrsSBaA3-0-a4e9a5133176de88dfc2f6b1a9b9eb77)
式中,ϕi是组分逸度系数。
在计算中,已知xi、yi时,计算组分i的气相逸度系数ϕiv时,Zi=yi;计算组分i为5的液相逸度系数ϕil时,Zi=xi。