PHP程序员面试算法宝典
上QQ阅读APP看书,第一时间看更新

1.3 移动多少盘子才能完成汉诺塔游戏

难度系数:★★★★☆

被考查系数:★★★★☆

题目描述:

汉诺塔(又称河内塔)问题是印度的一个古老的传说。在一个庙里有三根金刚石棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不停地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为辅助,但每次只能搬一个,而且大的不能放在小的上面。经过运算移动圆片的次数为18446744073709551615,看来众僧们耗尽毕生精力也不可能完成金片的移动。

后来,这个传说就演变为汉诺塔游戏,游戏规则如下:

1)有三根柱子A、B、C,A柱上有若干盘子;

2)每次移动一块盘子,小的只能叠在大的上面;

3)把所有碟子从A柱全部移到C柱上;

4)经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片;

5)例如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。

此外,汉诺塔问题也是程序设计中的经典递归问题。

分析与解答:

如果柱子标为ABC,那么要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘子时,就将B当作辅助柱。如果盘数超过2个,那么将第三个以下的盘子遮起来,就很简单了,每次处理两个盘子,也就是:A->B、A->C、B->C这三个步骤,而被遮住的部分,其实就是进入程序的递归处理。事实上,若有n个盘子,则移动完毕所需次数为2n-1,所以当盘数为64时,则所需次数为:264-1=18446744073709551615,如果对这数字没什么概念,那么可以假设每秒钟搬一个盘子,也要约5850亿年。

实现代码如下:

程序的运行结果为