![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第六届全国大学生数学竞赛预赛(2014年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)已知y1=ex和y2=xex是二阶齐次常系数线性微分方程的解,则该方程是________.
(2)设有曲面S:z=x2+2y2和平面L:2x+2y+z=0,则与L平行的S的切平面方程是________.
(3)设函数y=y(x)由方程所确定,求
.
(4)设,则
.
(5)已知,则
.
二、(12分)设n为正整数,计算.
三、(14分)设函数f(x)在[0,1]上有二阶导数,且有正常数A,B使得|f(x)|≤A,|f″(x)|≤B.证明:对任意x∈[0,1],有.
四、(14分)(1)设一球缺高为h,所在球的半径为R.证明:该球缺的体积为,球冠的面积为2πRh.
(2)设球体(x-1)2+(y-1)2+(z-1)2≤12被平面P:x+y+z=6所截的小球缺为Ω.记球缺上的球冠为Σ,方向指向球外,求第二型曲面积分.
五、(15分)设f在[a,b]上非负连续,严格单增,且存在xn∈[a,b]使得.求
.
六、(15分)设,求
.
参考答案
一、解 (1)由解的表达式可知微分方程对应的特征方程有二重根,r=1,故所求微分方程为y″-2y′+y=0.
(2)设P0(x0,y0,z0)是S上一点,则S在点P0的切平面方程为
-2x0(x-x0)-4y0(y-y0)+(z-z0)=0.
由于该切平面与平面L平行,所以相应的法向量成比例,即存在常数k≠0,使得
(-2x0,-4y0,1)=k(2,2,1).
解得x0=-1,,
,所以所求切平面方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1739115622-lz7ujrkppxHQ3Iu8aVZju02fUXR5UjkS-0-9178dcafbd5bbf1b9246cab5fe9c73a6)
(3)显然y(0)=1,等式两端对x求导,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0004.jpg?sign=1739115622-DJsh36IWqjYQwYNBfa8BbgZe9uYuEsAc-0-bfc429bef70a219dc77967a2232bb88d)
将x=0代入可得y′=3.
(4).所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0006.jpg?sign=1739115622-m9bvU7BHCjwF7ustcX7TiIEfJnpKRAed-0-43de5403112ad950c6cfaee23f21b06a)
(5)由可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0008.jpg?sign=1739115622-zkP3IkAq70nzcSsnfFpfEq4R6tt4u0B0-0-45b9b3f7c88ed7b62f5680e13e10f84f)
故有,其中α→0(x→0),即有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0010.jpg?sign=1739115622-oDZTIt3LtgqOwatMqfOSc7OuA5yTpmwz-0-fe47df8119cb7dcabcfe48b85878e3c8)
从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0011.jpg?sign=1739115622-yCYOY97jUrOewyFQScCBZNFRuCv4I4y2-0-59557e64b7f9db5323222e4516e99965)
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0012.jpg?sign=1739115622-ly7clzExOUYSnazlZWWv4j2xuObMmLeH-0-eb366202b8e152048759151a4d3e661d)
令lnx=u,则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0013.jpg?sign=1739115622-gdFblsE6fxmiNvALL9zRCVuaSMP7Rdhp-0-bf5896473f2d957637283dc9804ba8e5)
三、证明 由泰勒公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0014.jpg?sign=1739115622-T8G5XhcfFFVhA33OXJD0hvosOYhP2Tnq-0-3bc30e1e33a997fd2c93ca6df8b3e4b4)
上面两式相减,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0015.jpg?sign=1739115622-eKrx4rrUMfySN3RBz2tY23IFmnTknXZ4-0-c8a430d63d56672c4ee563989fc613a6)
由|f(x)|≤A,|f″(x)|≤B,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0016.jpg?sign=1739115622-HXKUFEI9z2PzMWn1kepdj5bVBZDZnw9F-0-ca922b3bebce13cf31dab49732db09f5)
又x2+(1-x)2在[0,1]上的最大值为1,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0017.jpg?sign=1739115622-PFA7JEVyuLpVNb0rlwI9lxb0uZSqtzJ6-0-138696bab31cf9527225f08213d25387)
四、(1)证明 设球缺所在球表面的方程为x2+y2+z2=R2,球缺的中心线为z轴,且设球缺所在的圆锥顶角为2α.
记球缺的区域为Ω,则其体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739115622-Kfk23D5PGfATkFUS72rVQqNpnKPkbxvB-0-cb544b1d84ff80ee6cb917e9392f421d)
由于球面的面积元素为dS=R2sinθdθ,所以球冠的面积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739115622-7OwTOkc7cFFvekAEySltFibvI8y8X1yn-0-9a76a71e7e6f5987cb88745510f9b3cc)
(2)解 记球缺的底面圆为P1,方向指向球缺外,且记
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739115622-8k235vSr1Yaxvg3GzdQJDQljDzadA8vK-0-c48dba0cab9f9fdb6554c76952b80b62)
由高斯公式得.其中V(Ω)为Ω的体积.
由于平面P的正向单位法向量为(1,1,1),故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0006.jpg?sign=1739115622-HwbGzkclUFjaIi1qcrus8CcoOfeQNA25-0-33b41c4c3f9c9ac7ca5b03d5ba227fed)
其中σ(P1)为P1的面积,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0007.jpg?sign=1739115622-hHCuy9crNqXWKcZUUz3Tgn3Ed89m5QHs-0-bc912f98fa6c8cbf52eb14877e4a835a)
由于球缺底面圆心为Q(2,2,2),而球缺的顶点为D(3,3,3),故球缺的高度为,再由(1)所证并代入
,
,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0011.jpg?sign=1739115622-0sKwYffiAb0rdXgGlvQj82uNTuFANu4e-0-394927af0abf2d05bc93a0df7a6e7407)
五、解 考虑特殊情形:a=0,b=1.下面证明.
首先,xn∈[0,1].即xn≤1,只要证明∀ε>0(<1),∃N,当n>N时xn>1-ε.由f在[0,1]上严格单增,就是要证明
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0013.jpg?sign=1739115622-Z2CmDoHiLEpOY4e5FuD3G6Jcrdr23bkS-0-1cf3fba421ad87660638c7720633f35f)
由于∀c∈(0,1),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0014.jpg?sign=1739115622-UlXgb01PDAYkIwu1opEZFFryPVSikkiA-0-fa38896792ea4f1dd40bc0eda01656f9)
现取,则f(1-ε)<f(c),即
,于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0017.jpg?sign=1739115622-p3nyzskeIZ5MGLObgHNuDcLWPyk6rVVy-0-0d8702432a12d588f0569d9be5f2ac48)
所以∃N,∀n>N时有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0018.jpg?sign=1739115622-fb0muNDI24i159tlnf1FyfTeF5pg0Pd0-0-0974bf8f6cc704dbfa3859514121a6f7)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0019.jpg?sign=1739115622-4GkH3mAwbn9N60f6SrGakNxGaoJGDkUL-0-31c9fb6cb74bdb0e8952ff3f022ed587)
从而1-ε<xn,由ε的任意性得.
再考虑一般情形,令F(t)=f(a+t(b-a)),由f在[a,b]上非负连续,严格单增,知F在[0,1]上非负连续,严格单增.从而∃tn∈[0,1],使得,且
,即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0023.jpg?sign=1739115622-YTjpAFxy1hfmdJCcnrsAZhPr9WqPVyzY-0-092709aa48734507ccffd3b1843590dd)
记xn=a+tn(b-a),则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739115622-i0BkqEIze4zXICl8Ah53hfpyuFEpt3Hf-0-993f39a12ca9293746f55a38f5f0bd21)
六、解 令,因为
,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0004.jpg?sign=1739115622-rDWzbnwzn5EUvUPYsj2J7hDOWa1ElVVk-0-00b32c45e75b3245650de21b132170d4)
记,则
.令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0007.jpg?sign=1739115622-nFwDxUrv1rrZFtjaS2ZfmafhpQ3BXcNm-0-d96132c4f857d159db076c84ff3d7642)
由拉格朗日中值定理,∃ξi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0008.jpg?sign=1739115622-Jx4wa1EY3OWx0PgohLIREf9DrXMlSToA-0-8b0129bef188465f824c036f1eebc8d4)
记mi,Mi分别是f′(x)在[xi-1,xi]上的最小值和最大值,则mi≤f′(ξi)≤Mi,故积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0009.jpg?sign=1739115622-7tatFJbOmLJGKzKAbURDFrwLyAOuhjI3-0-f61c5b707de29f317c9d296ebcb8ed58)
之间,所以∃ηi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0010.jpg?sign=1739115622-YXY1erMCK5bD0l8rZkY4iLavRoDAecBV-0-012d75fc3cd79360ce97841a04536d74)
于是,有.从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0012.jpg?sign=1739115622-pu92zIN27uGlSQ8CwjREzBMHHYZWQLJx-0-0dcc63b99478d2ba873a785f32041106)