![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第七届全国大学生数学竞赛预赛(2015年非数学类)
试题
一、计算下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739115483-uLOalPOL7CfyaRKJnX4LWjziAW4CzOTK-0-fed4fca6b9009d059967fb65c7700774)
(2)设函数z=z(x,y)由方程所决定,其中F(u,v)具有连续的偏导数,且xFu+yFv≠0,则
.(本小题结果要求不显含F及其偏导数)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面与曲面z=x2+y2所围区域的体积为________.
(4)函数在(-5,5]内的傅里叶级数在x=0收敛的值为________.
(5)设区间(0,+∞)上的函数u(x)定义为,则u(x)的初等函数表达式为________.
二、(12分)设M是以三个正半轴为母线的半圆锥面,求其方程.
三、(12分)设f(x)在(a,b)内二次可导,且存在常数α,β使得对于∀x∈(a,b),f′(x)=αf(x)+βf″(x),证明f(x)在(a,b)内无穷次可导.
四、(14分)求幂级数的收敛域与和函数.
五、(16分)设函数f在[0,1]上连续,且.试证:
(1)∃x0∈[0,1],使得|f(x0)|>4;(2)∃x1∈[0,1],使得|f(x1)|=4.
六、(16分)设f(x,y)在x2+y2≤1上有连续的二阶偏导数,.若f(0,0)=0,fx(0,0)=fy(0,0)=0,证明
.
参考答案
一、解 (1)由于,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739115483-HcgdcnjiK5timMZVebYzY3QOkX0BREig-0-e96d7ca9bf12fcb4a611bb1e31321e3d)
由夹逼准则,可得.
(2)方程两端关于x求偏导数,可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0003.jpg?sign=1739115483-755uWNZkjRG76KMLLXLH38APkGGNbDyE-0-5d3e741373d2635170fbfd99c0e4472c)
类似地,对y求偏导数可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0004.jpg?sign=1739115483-GF1OWTtxCI5BvNCB6UxuEgbmxypM78zE-0-ad981edbff2a93a61df3dac954fe9098)
于是,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0005.jpg?sign=1739115483-W64kbMySbIzMNFu6KUhCYYhHK3iQ9PrM-0-0270a03f20e0f8e18f9fceb5921eccfc)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面为
2(x-1)-2(y+1)-(z-3)=0,即z=2x-2y-1.
联立得所围区域在xOy面上的投影D为
D={(x,y)|(x-1)2+(y+1)2≤1}.
所求体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0007.jpg?sign=1739115483-B3a8sJIvWkCczUFEnrQKTE7QVtzDIpCj-0-33bf805b4fbdf57eddfb9288b4d4d4f0)
令x-1=rcost,y+1=rsint,则dσ=rdtdr,D:所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0009.jpg?sign=1739115483-ALNwYYhx4Pp62VAGAO7VUwgnvF8QCd3R-0-f3be79f8fb5c51ae44a4d5fb9ca39d67)
(4)由狄利克雷收敛定理,得.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0011.jpg?sign=1739115483-CHrY7OhE9uqW0MMcgUUXIaQ2QRpN9J2z-0-f27f7c826a64edf735619ff71825c7ae)
所以.
二、解 显然O(0,0,0)为M的顶点,A(1,0,0),B(0,1,0),C(0,0,1)在M上.由A、B、C三点决定的平面x+y+z=1与球面x2+y2+z2=1的交线L是M的准线.
设P(x,y,z)是M上的点,(u,v,w)是M的母线OP与L的交点,则OP的方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0013.jpg?sign=1739115483-Ckhmz0YqSa36cphnWR0wU9CIQSS4X3Nc-0-669e9577741a1428393623a91e5ebbe0)
代入准线方程,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0014.jpg?sign=1739115483-SOb8EWXeAjmK8l7zL54zRABVs2KXA4Xa-0-083bff50d23fbd8d6a821184e58cd212)
消去t,得圆锥面M的方程为xy+yz+zx=0.
三、证明 (1)若β=0,则∀x∈(a,b),有
f′(x)=αf(x),f″(x)=α2f(x),…,f(n)(x)=αnf(x),…,
从而f(x)在(a,b)内无穷次可导.
(2)若β≠0,则∀x∈(a,b),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0001.jpg?sign=1739115483-hd2zScq9BuCb7dwVGvElmrfVV5aLgkGt-0-1828dd938c8ce239a16488629e5d46cc)
(1)
其中.
因为(1)式右端可导,从而有
f‴(x)=A1f″(x)+B1f′(x).
设f(n)(x)=A1f(n-1)(x)+B1f(n-2)(x),n>1,则
f(n+1)(x)=A1f(n)(x)+B1f(n-1)(x).
所以,f(x)在(a,b)内无穷次可导.
四、解 因,所以收敛半径R=+∞,收敛域为(-∞,+∞).由
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0004.jpg?sign=1739115483-ER09gP9yW5l8iTIkCCq99h8nTxGCymcX-0-5d4c3d2cb62a7742a4b9be2c0839c48a)
及幂级数的收敛域都为(-∞,+∞),得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0006.jpg?sign=1739115483-VydwQHihijvIRtRuI7BINhlLyOlDRsX2-0-3a05f6b2337af7ecef2a8036c28f8a20)
用S1(x),S2(x),S3(x)分别表示上式右端三个幂级数的和,依据ex的幂级数展开式可得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0007.jpg?sign=1739115483-gUNQfQBZaiWHNDSTNB4aAZAdY2hHgwag-0-48dd1164a36fc4c614866955868f309a)
综合上述讨论,可得幂级数的和函数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0008.jpg?sign=1739115483-EKSQO31kmbEEcaBOrLta8Nv1gXH7m17G-0-63e1af1b853d2cb80b699228fe076401)
五、证明 (1)反证法.若∀x∈[0,1],|f(x)|≤4,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0009.jpg?sign=1739115483-dAL2MrORxMoMkoRpj8VID3ut2bg90cjV-0-df9ccc21dd4f04f1030c2bc9e75b27aa)
因此,.而
,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0012.jpg?sign=1739115483-0DwvYHtBrcA20UsgCtrSEwFVEK2PcvUm-0-94f3aa1ca46acf02b2e0c0bcca59050c)
所以对于任意的x∈[0,1],|f(x)|=4.又由f(x)的连续性知,
f(x)≡4 或 f(x)≡-4.
这与条件矛盾.所以∃x0∈[0,1],使得
|f(x0)|>4.
(2)先证∃x2∈[0,1]使得|f(x2)|<4.若不然,∀x∈[0,1],|f(x)|≥4,则f(x)≥4或f(x)≤-4恒成立,这与矛盾.
再由f(x)的连续性及(1)的结果,利用介值定理,可得∃x1∈[0,1]使得|f(x1)|=4.
六、证明 在(0,0)处展开f(x,y)得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1739115483-UN7FBzIWyf2QX7JVGBbOuPCnR3xuVQNR-0-44d326f4bd0f45a9e86d8168cb1718f6)
记,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1739115483-ahTFIF5FBEoCJShatpcxxu7RmL5lPpbF-0-7e87767cad4ed98d9587afd8bfa03a5f)
由于以及
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0005.jpg?sign=1739115483-egxTTMSTXaOME6sfvIChXciKfloLvKZN-0-a003ba9266fce5194694ed0ec39c87e0)
于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0006.jpg?sign=1739115483-ioK8HvaYA17fddYSZNB0QEnMno3BaKqu-0-649382023a6322921aa24961ab2c9f6c)
即,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0008.jpg?sign=1739115483-88U4QBChQva4D9vgwhcjpKg6GAnxXn4N-0-42d02e31a913aeb59d5e2baeee1aede2)